Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Antioxidants (Basel) ; 13(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38671884

RESUMEN

The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.

2.
Life (Basel) ; 14(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38541697

RESUMEN

In the complex field of plant science, knowledge of the many difficulties that plants encounter from both living and non-living stresses is essential for maintaining biodiversity and managing natural resources in a sustainable manner, in addition to guaranteeing global food security [...].

3.
Sci Total Environ ; 926: 171862, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527538

RESUMEN

Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.


Asunto(s)
Nanoestructuras , Suelo , Conservación de los Recursos Naturales , Ecosistema , Análisis de Peligros y Puntos de Control Críticos , Agricultura/métodos , Nanotecnología/métodos , Plantas , Fertilizantes/análisis
4.
BMC Plant Biol ; 24(1): 192, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491471

RESUMEN

Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.


Asunto(s)
Cadmio , Giberelinas , Contaminantes del Suelo , Cadmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Contaminantes del Suelo/metabolismo , Carbón Orgánico/farmacología , Carbón Orgánico/metabolismo , Suelo/química , Malondialdehído/metabolismo
5.
Microorganisms ; 12(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543540

RESUMEN

This Special Issue illustrates the collaborative effort required to harness the potential of nanoparticles, showcasing their role in targeting drug-resistant bacteria and highlighting new pathways for drug delivery, diagnostics, and beyond [...].

6.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474315

RESUMEN

Molecular techniques have become influential instruments in biological study, transforming our comprehension of life at the cellular and genetic levels [...].


Asunto(s)
Disciplinas de las Ciencias Biológicas
7.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474313

RESUMEN

Various molecular techniques based on omics (transcriptomics, proteomics, genomics) and phylogenetics have been applied in the field of biological sciences [...].


Asunto(s)
Genómica , Proteómica , Genómica/métodos , Proteómica/métodos , Perfilación de la Expresión Génica , Metabolómica/métodos
8.
Microsc Res Tech ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450874

RESUMEN

The classification and identification of Aster glehnii F. Schmidt are determined from its foliar epidermal anatomical features. Scanning electronic microscopy has been used to determine the foliar epidermal anatomical characteristics of the species in detail. This study compared the qualitative and quantitative characteristics of the leaf epidermis of A. glehnii for taxonomic identification to be used as a reference for future studies on the species. A. glehnii has smooth, thin cuticles, depressed anomocytic stomata dispersed randomly throughout the leaf surface, polygonal epidermal cells with straight to slightly curved anticlinal walls, and no trichomes. There are obvious veins containing thick-walled bundle sheath cells. The stomatal density is between 100 and 150 stomata per millimeter. The vein density ranges from five to 10 veins per millimeter, and the epidermal cells are 10 to 20 µm long and 5 to 10 µm in width. Understanding the connections between the different A. glehnii species and categorizing and identifying them depend heavily on these foliar epidermal structural features. Taxonomy and conservation are closely intertwined because the former serves as the basis for comprehending and safeguarding biodiversity. RESEARCH HIGHLIGHTS: Optical microscopy of the A. glehnii leaf epidermis for taxonomic identification SEM was used to identify and authenticate endemic species Microscopic identification of endemic species can assist in the conservation.

9.
BMC Plant Biol ; 24(1): 128, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383291

RESUMEN

Salinity poses significant challenges to agricultural productivity, impacting crops' growth, morphology and biochemical parameters. A pot experiment of three months was conducted between February to April 2023 in the Department of Botany, The Islamia University of Bahawalpur. Four brinjal (eggplant) varieties: ICS-BR-1351, HBR-313-D, HBR-314-E, and HBR-334-D were selected and assessed for the effects of salinity on various growth and biochemical attributes. The experiment was completely randomized in design with three replicates each. This study revealed that increased salinity significantly reduced the shoot length, root length, and leaf number across all varieties, with maximum adverse effects observed at a 300mM NaCl concentration. Among the tested varieties, ICS-BR-1351 demonstrated superior performance in most growth parameters, suggesting potential salt tolerance. Biochemically, salinity decreased chlorophyll content across all varieties, with the sharpest decline observed at the highest salt concentration. V4 (HBR-334-D) showed a 57% decrease in chlorophyll followed by V3 (HBR-314-E) at 56%, V2 (HBR-313-D) at 54%, and V1 (ICS-BR-1351) at 33% decrease at maximum salt levels as compared to control. Conversely, carotenoid content increased up to -42.11% in V3 followed by V2 at -81.48%, V4 at -94.11%, and - 233% in V1 at 300mM NaCl stress as compared to respective controls. V3 (HBR-314-E) has the maximum value for carotenoids while V1 has the lowest value for carotenoids as compared to the other three brinjal varieties. In addition to pigments, the study indicated a salinity-induced decrease in total proteins and total soluble sugar, whereas total amino acids and flavonoids increased. Total proteins showed a decrease in V2 (49.46%) followed by V3 (36.44%), V4 (53.42%), and V1 (53.79%) at maximum salt concentration as compared to plants treated with tap water only. Whereas, total soluble sugars showed a decrease of 52.07% in V3, 41.53% in V2, 19.49% in V1, and 18.99% in V4 at the highest salt level. While discussing total amino acid, plants showed a -9.64% increase in V1 as compared to V4 (-31.10%), V2 (-36.62%), and V3 (-22.61%) with high salt levels in comparison with controls. Plant flavonoid content increased in V3 (-15.61%), V2 (-19.03%), V4 (-18.27%) and V1 (-27.85%) at 300mM salt concentration. Notably, salinity elevated the content of anthocyanin, lycopene, malondialdehyde (MDA), and hydrogen peroxide (H2O2) across all varieties. Antioxidant enzymes like peroxidase, catalase, and superoxide dismutase also increased under salt stress, suggesting an adaptive response to combat oxidative damage. However, V3 (HBR-314-E) has shown an increase in anthocyanin at -80.00%, lycopene at -24.81%, MDA at -168.04%, hydrogen peroxide at -24.22%, POD at -10.71%, CAT as-36.63 and SOD as -99.14% at 300mM NaCl stress as compared to control and other varieties. The enhanced accumulation of antioxidants and other protective compounds suggests an adaptive mechanism in brinjal to combat salt-induced oxidative stress. The salt tolerance of different brinjal varieties was assessed by principal component analysis (PCA), and the order of salt tolerance was V1 (ICS-BR-1351) > V4 (HBR-334-D), > V2 (HBR-313-D) > V3 (HBR-314-E). Among the varieties studied, ICS-BR-1351 demonstrated resilience against saline conditions, potentially offering a promising candidate for saline-prone agricultural areas.


Asunto(s)
Antioxidantes , Solanum melongena , Antocianinas , Antioxidantes/metabolismo , Carotenoides , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Licopeno , Salinidad , Tolerancia a la Sal , Cloruro de Sodio/efectos adversos , Solanum melongena/metabolismo
10.
Microsc Res Tech ; 87(5): 869-875, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38115224

RESUMEN

Understanding the anatomical traits of the foliar epidermis is essential for making precise species identification and categorization. In this study, scanning electron microscopy (SEM) was used to examine the taxonomically significant foliar epidermal traits of Hydrangea luteovenosa and H. serrata. The qualitative and quantitative traits observed included the epidermal cell form, cuticle presence, trichome morphology, stomatal type, and guard cell features. H. serrata had a thin and smooth cuticle, and epidermal cells organized compactly into cubic or hexagonal shapes. The stomata were of the anomocytic type and dispersed, while the trichomes were straightforward, unbranched, and distributed sparsely. The guard cells had distinct cell walls and a kidney-shaped morphology. These crucial traits for taxonomy were in line with an epidermis composed of three to five layers. Similar polygonal epidermal cells with a compact arrangement were observed in H. luteovenosa, together with a thin and smooth cuticle. The stomata were anomocytic and dispersed, while the trichomes were straightforward, unbranched, and sparsely distributed. The guard cells have distinct cell walls and a kidney-shaped morphology. The traits were indicative of an epidermal structure with three to five layers. These traits helped correctly identify and categorize these two species of Hydrangea. In addition to assisting in the taxonomic classification of these species and advancing knowledge of their ecological and evolutionary links, the SEM study provided insightful information into the structural variety of these species. RESEARCH HIGHLIGHTS: Microscopic characteristics of H. luteovenosa and H. serrata Understanding the anatomical traits of the foliar epidermis is essential for precise species identification and categorization.


Asunto(s)
Hydrangea , Estomas de Plantas , Estomas de Plantas/ultraestructura , Epidermis de la Planta/ultraestructura , Hojas de la Planta/anatomía & histología , Tricomas/ultraestructura , Microscopía Electrónica de Rastreo
11.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37895884

RESUMEN

Nanotechnology is one of the most advance and multidisciplinary fields. Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. The use of plants and their extracts is one of the most valuable methods towards rapid and single-step protocol preparation for various nanoparticles, keeping intact "the green principles" over the conventional ones and proving their dominance for medicinal importance. A facile and eco-friendly technique for synthesizing silver nanoparticles has been developed by using the latex of Euphorbia royleana as a bio-reductant for reducing Ag+ ions in an aqueous solution. Various characterization techniques were employed to validate the morphology, structure, and size of nanoparticles via UV-Vis spectroscopy, XRD, SEM, and EDS. FTIR spectroscopy validates different functional groups associated with biomolecules stabilizing/capping the silver nanoparticles, while SEM and XRD revealed spherical nanocrystals with FCC geometry. The results revealed that latex extract-mediated silver nanoparticles (LER-AgNPs) exhibited promising antibacterial activity against both gram-positive and -negative bacterial strains (Bacillus pumilus, Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, and Streptococcus viridians). Both latex of E. royleana and LER-AgNPs were found to be potent in scavenging DPPH free radicals with respective EC50s and EC70s as 0.267% and 0.518% and 0.287% and 0.686%. ROSs produced in the body damage tissue and cause inflammation in oxidative stress-originated diseases. H2O2 and OH* scavenging activity increased with increasing concentrations (20-100 µg/mL) of LER-AgNPs. Significant reestablishment of ALT, AST, ALP, and bilirubin serum levels was observed in mice intoxicated with acetaminophen (PCM), revealing promising hepatoprotective efficacy of LER-AgNPs in a dose-dependent manner.

12.
Plants (Basel) ; 12(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687353

RESUMEN

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of nearly all land-dwelling plants, increasing growth and productivity, especially during abiotic stress. AMF improves plant development by improving nutrient acquisition, such as phosphorus, water, and mineral uptake. AMF improves plant tolerance and resilience to abiotic stressors such as drought, salt, and heavy metal toxicity. These benefits come from the arbuscular mycorrhizal interface, which lets fungal and plant partners exchange nutrients, signalling molecules, and protective chemical compounds. Plants' antioxidant defence systems, osmotic adjustment, and hormone regulation are also affected by AMF infestation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress conditions. As a result of its positive effects on soil structure, nutrient cycling, and carbon sequestration, AMF contributes to the maintenance of resilient ecosystems. The effects of AMFs on plant growth and ecological stability are species- and environment-specific. AMF's growth-regulating, productivity-enhancing role in abiotic stress alleviation under abiotic stress is reviewed. More research is needed to understand the molecular mechanisms that drive AMF-plant interactions and their responses to abiotic stresses. AMF triggers plants' morphological, physiological, and molecular responses to abiotic stress. Water and nutrient acquisition, plant development, and abiotic stress tolerance are improved by arbuscular mycorrhizal symbiosis. In plants, AMF colonization modulates antioxidant defense mechanisms, osmotic adjustment, and hormonal regulation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress circumstances. AMF-mediated effects are also enhanced by essential oils (EOs), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA), and phosphorus (P). Understanding how AMF increases plant adaptation and reduces abiotic stress will help sustain agriculture, ecosystem management, and climate change mitigation. Arbuscular mycorrhizal fungi (AMF) have gained prominence in agriculture due to their multifaceted roles in promoting plant health and productivity. This review delves into how AMF influences plant growth and nutrient absorption, especially under challenging environmental conditions. We further explore the extent to which AMF bolsters plant resilience and growth during stress.

13.
Microorganisms ; 11(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37512835

RESUMEN

Throughout the tropical and subtropical climates, the genus Citrus can be found. The current study was conducted to extract the Citrus sinensis peel oil and evaluate its antibacterial, antifungal and antiparasitic potential. Petroleum ether was used to extract the C. sinensis peel oil through a Soxhlet apparatus. The antimicrobial and antifungal potential was determined via agar well diffusion method and minimum inhibitory concentrations (MIC) were calculated (test bacterial strains: Staphylococcus aureus, Escherichia coli and Streptococcus agalactiae; test fungal strains: Aspergillus flavus, Aspergillus niger, Altrnaria alternata). Antiparasitic activity against Leishmaniatropica was determined following standard protocol using amphotericin-B as positive and Dimethyl Sulfoxide (DMSO) as a negative control and the percentage inhibition was calculated. The oil extracted was brownish yellow with a tangy smell, water-insoluble, density (0.778 g/cm3) and specific gravity (0.843 g/cm). In antibacterial activity, the diameter of the zone of inhibition was maximum against E. coli (14 mm) and minimum for S. agalactiae (10 mm). While in antifungal activity diameter of the zone of inhibition was maximum against A. flavus (12.5 mm) and minimum for A. alternata (8.6 mm). S. agalactiae exhibited the minimum MIC value (6 mg/mL) and in fungal strains A. alternata exhibited the minimum value (2 mm). Citrus sinensis peel oil displayed antileishmanial efficiency of 60% at 50 µg/mL concentration after 48 h of incubation. C. sinensis peel oil demonstrated antimicrobial capabilities, implying that it could be used as a natural preservative in food or as an effective treatment against a variety of pathogenic organisms. Industries should extract oil from the waste of citrus fruits which will be beneficial from an economic point of view.

14.
Microsc Res Tech ; 86(11): 1542-1547, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37382310

RESUMEN

This study used the foliar epidermal anatomical characteristics through microscopic techniques to compare the foliar anatomy of Silene takesimensis Uyeki & Sakata (Caryophyllaceae). The species is endemic to South Korea. This study examined the foliar epidermal anatomical traits. The leaf morphological traits of the species are essential to distinguish the species from other taxa. The comparative systemic significance of the character species was examined. The epidermal cell shape, the epidermal cell wall, and the number of lobes per cell were among the distinctive foliar anatomical characteristics. The variations in quantitative characteristics were significant. The systematics of the genus Silene were supported by various microscopic methods. The foliar epidermal anatomical characteristics of the endemic species S. takesimensis have significant taxonomic characteristics to differentiate the species. RESEARCH HIGHLIGHTS: Silene takesimensis, a member of the Caryophyllaceae family, has been studied in-depth. Valuable insights and knowledge were obtained about the unique characteristics and behaviors of Silene takesimensis using SEM.

15.
Heliyon ; 9(5): e15909, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206037

RESUMEN

The present study examined the biological potential and phytochemicals of Sophora mollis, Mucuna pruriens, and Indigofera atropurpurea methanolic leaf extracts. In vitro anti-acetylcholinesterase and anti-lipase assays were performed using different concentrations of plant extracts, and the IC50 values were determined. The cytotoxic potential of the selected plant extracts was assessed against HeLa, PC3, and 3T3 cell lines using an MTT assay. S. mollis leaf extract displayed the highest inhibition percentage (114.60% ± 19.95 at 1000 µg/mL) for the anti-acetylcholinesterase activity with a prominent IC50 value of 75.9 µg/mL. The anti-lipase potential was highest with the M. pruriens leaf extract (355.5 µg/mL IC50), followed by the S. mollis extract (862.7 µg/mL IC50). Among the cell lines tested, the cytotoxic potential of the I. atropurpurea extract (91.1 ppm IC50) against the PC3 cell line was promising. High-performance liquid chromatography revealed gallic acid, chlorogenic acid, caffeic acid, vanillic acid, rutin trihydrate, and quercetin dihydrate in varying concentrations in all plant species. The concentration of chlorogenic acid (69.09 ppm) was highest in M. pruriens, and the caffeic acid concentration (45.20 ppm) was higher in S. mollis. This paper reports the presence of bioactive therapeutic compounds in selected species of the Fabaceae family that could be micro-propagated, isolated, and utilized in pharmaceutical industries.

16.
Front Chem ; 11: 1154128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090246

RESUMEN

Copper oxide nanoparticles (CuO-NPs) have piqued the interest of agricultural researchers due to their potential application as fungicides, insecticides, and fertilizers. The Serratia sp. ZTB29 strain, which has the NCBI accession number MK773873, was a novel isolate used in this investigation that produced CuO-NPs. This strain can survive concentrations of copper as high as 22.5 mM and can also remove copper by synthesizing pure CuO-NPs. UV-VIS spectroscopy, DLS, Zeta potential, FTIR, TEM, and XRD techniques were used to investigate the pure form of CuO-NPs. The synthesized CuO-NPs were crystalline in nature (average size of 22 nm) with a monoclinic phase according to the XRD pattern. CuO-NPs were found to be polydisperse, spherical, and agglomeration-free. According to TEM and DLS inspection, they ranged in size from 20 to 40 nm, with a typical particle size of 28 nm. CuO-NPs were extremely stable, as demonstrated by their zeta potential of -15.4 mV. The ester (C=O), carboxyl (C=O), amine (NH), thiol (S-H), hydroxyl (OH), alkyne (C-H), and aromatic amine (C-N) groups from bacterial secretion were primarily responsible for reduction and stabilization of CuO-NPs revealed in an FTIR analysis. CuO-NPs at concentrations of 50 µg mL-1 and 200 µg mL-1 displayed antibacterial and antifungal activity against the plant pathogenic bacteria Xanthomonas sp. and pathogenic fungus Alternaria sp., respectively. The results of this investigation support the claims that CuO-NPs can be used as an efficient antimicrobial agent and nano-fertilizer, since, compared to the control and higher concentrations of CuO-NPs (100 mg L-1) considerably improved the growth characteristics of maize plants.

17.
Microsc Res Tech ; 86(8): 923-928, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37083080

RESUMEN

The foliar epidermal anatomical characteristics of the two endemic Apiaceae species of Korea Bupleurum latissimum Nakai and Dystaenia takesimana (Nakai) Kitag. were investigated. The taxonomically important characteristics of these two species were identified and described to help understand their classical taxonomy. Scanning electron microscopy (SEM) was used to observe the anatomical characteristics of the studied species in detail. The comparative foliar epidermal anatomical characteristics were observed in the present research for the two-endemic species. Some of the most important foliar epidermal anatomical characteristics were observed to distinguish them, including the epidermal cell shape and size, stomata type, and trichomes shape and size. SEM provided sufficient evidence to distinguish the study species. The foliar epidermal anatomical characteristics provide sufficient information to differentiate these two species from their closely related taxa. RESEARCH HIGHLIGHTS: Apiaceae species endemic to Ulleungdo and Dokdo Islands exhibit unique foliar epidermal anatomical characteristics that can be used for taxonomic identification and classification. This study contributes to the documentation of the plant diversity of Ulleungdo and Dokdo Islands, and highlights the need for further research on the biogeography and conservation of these endemic plant species.


Asunto(s)
Apiaceae , Epidermis de la Planta , Islas , Microscopía Electrónica de Rastreo , República de Corea , Hojas de la Planta
18.
Plants (Basel) ; 12(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050088

RESUMEN

Plants differ widely in their ability to find tolerable climatic ranges through seed dispersal, depending on their life-history traits and habitat characteristics. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review on seed dispersal mechanisms was conducted to elucidate plant seed movements amid changing environments. Here, the highest relative count of studies was found in Spain (16.47%), followed by Brazil (14.12%), and the USA (14.12%). The megadiverse, hotspot countries (e.g., Philippines, Vietnam, Myanmar, India, and Indonesia) and Africa (Tanzania, South Africa, Democratic Republic of the Congo) have very low to no data about the reviewed topic. The effects of land use changes, habitat degradation/disturbances, climate, and extreme weather conditions on seed dispersal mechanisms and agents had the highest share of studies across topics and countries. Plant diversity and distribution of anemochorous, endozoochorous, epizoochorous, hydrochorous, myrmecochorous, and ornithochorous species are seriously affected by changing environments due to altered long-distance seed dispersal. The fruit types commonly associated with endozoochory and ornithochory are species with achene, capsule, drupe, fleshy, and nut fruits/seeds, whereas achene, capsule, samara/winged seeds are associated with anemochory. The present review provides a summary of evidence on how plants are affected by climate change as populations of dispersal vectors decline. Finally, recommendations for further study were made based on the identified knowledge gaps.

19.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110639

RESUMEN

Iron oxide nanoparticles (NPs) have attracted substantial interest due to their superparamagnetic features, biocompatibility, and nontoxicity. The latest progress in the biological production of Fe3O4 NPs by green methods has improved their quality and biological applications significantly. In this study, the fabrication of iron oxide NPs from Spirogyra hyalina and Ajuga bracteosa was conducted via an easy, environmentally friendly, and cost-effective process. The fabricated Fe3O4 NPs were characterized using various analytical methods to study their unique properties. UV-Vis absorption peaks were observed in algal and plant-based Fe3O4 NPs at 289 nm and 306 nm, respectively. Fourier transform infrared (FTIR) spectroscopy analyzed diverse bioactive phytochemicals present in algal and plant extracts that functioned as stabilizing and capping agents in the fabrication of algal and plant-based Fe3O4 NPs. X-ray diffraction of NPs revealed the crystalline nature of both biofabricated Fe3O4 NPs and their small size. Scanning electron microscopy (SEM) revealed that algae and plant-based Fe3O4 NPs are spherical and rod-shaped, averaging 52 nm and 75 nm in size. Energy dispersive X-ray spectroscopy showed that the green-synthesized Fe3O4 NPs require a high mass percentage of iron and oxygen to ensure their synthesis. The fabricated plant-based Fe3O4 NPs exhibited stronger antioxidant properties than algal-based Fe3O4 NPs. The algal-based NPs showed efficient antibacterial potential against E. coli, while the plant-based Fe3O4 NPs displayed a higher zone of inhibition against S. aureus. Moreover, plant-based Fe3O4 NPs exhibited superior scavenging and antibacterial potential compared to the algal-based Fe3O4 NPs. This might be due to the greater number of phytochemicals in plants that surround the NPs during their green fabrication. Hence, the capping of bioactive agents over iron oxide NPs improves antibacterial applications.


Asunto(s)
Ajuga , Nanopartículas del Metal , Spirogyra , Nanopartículas del Metal/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X , Pruebas de Sensibilidad Microbiana
20.
Microsc Res Tech ; 86(6): 686-693, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36866527

RESUMEN

The biogenic synthesis of silver nanoparticles (AgNPs) is an important step in developing eco-friendly and environmentally stable tools for ameliorating crop growth. In the current study, AgNPs were synthesized using Funaria hygrometrica and characterized using ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The UV spectrum showed an absorption peak at 450 nm. SEM revealed an irregular and spherical morphology, FTIR spectroscopy indicated the presence of various functional groups, while XRD displayed peaks at 45.24°, 38.17°, 44.34°, 64.54°, and 57.48° 2θ. The effects of the F. hygrometrica-mediated AgNPs on maize growth and germination were assessed at 0, 100, 300, and 500 ppm. The germination percentage and relative germination rate were increased to 95% ± 1.83% and 100% ± 2.48% at 100 ppm of synthesized AgNPs and then declined at 300 and 500 ppm. The length, fresh weight, and dry matter of the root, shoot, and seedlings were highest at 100 ppm NPs. The plant height, root length, and dry matter stress tolerance indices were also the highest (112.3%, 118.7%, and 138.20% compared with the control) at 100 ppm AgNPs. Moreover, the growth of three maize varieties, that is, NR-429, NR-449, and Borlog, were assessed at 0, 20, 40, and 60 ppm F. hygrometrica-AgNPs. The results indicated the highest root and shoot length at 20 ppm AgNPs. In conclusion, seed priming with AgNPs enhances the growth and germination of maize and can ameliorate crop production globally. RESEARCH HIGHLIGHTS: Funaria hygrometrica Hedw.-mediated AgNPs were synthesized and characterized. Biogenic AgNPs influenced the growth and germination of maize seedlings. All growth parameters were highest at 100 ppm synthesized NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Zea mays , Plantones , Plata/farmacología , Plata/química , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA